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Abstract

The possibility to classify the provenance of a wide variety of randomly selected wines according to multi-element analysis data was
tested. Large number of parameters is used for solution of such complex problem and the role of the noise increases. Stepwise approach is
tested dividing the wine origin classification into some steps to simplify the problem. Outcomes of the approach are studied on the basis
of the chemical analytical data obtained for 23 elements in 103 wines from seven countries. Anova was used to select the most informa-
tive elements at each step. Three or four elements often were found sufficient to discriminate between countries at 0.9 probability level.
Principal component analysis was applied for concise data presentation. The possibility of application of the multivariate normal distri-
bution to the principal components was tested and confirmed, and thoroughly used for the classification power estimates. Problems of
indication of batches and adequate representation of those by samples are emphasized.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The first successful attempts to use the multi-element
analysis for classification of wines according to their prov-
enance or country of origin can be dated as early as 1979
(Kwan, Kowalski, & Skogerboe, 1979). However, only
comparatively abundant elements were measured at that
time; Rb, Mn, K, Li, Mg, Ca, Na, Fe and Sr were the most
cited for their capacity to discriminate wines according to
their geographical origin. The advent of the inductively
coupled plasma (ICP) instruments substantially increased
the possibilities to measure trace and ultra-trace elements.
Several reports demonstrated that trace element patterns
can be used to fingerprint wines, and that these patterns,
at least partially, reflect the provenance of wine or even
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enable to secure its authenticity (Almeida & Vasconcelos,
2003; Capron, Smeyers-Verbeke, & Massart, 2007; Taylor,
Longerich, & Greenough, 2003).

On the other hand, it became obvious that direct correla-
tion between element concentrations in wine and soil does
not exist indicating that soil-plant interactions are highly
complex. Moreover, the content of detected elements is influ-
enced by the local environmental factors and the peculiarities
of handling and processing treatments applied both in
viticulture and wine production. Nevertheless, promising
capabilities of discrimination and classification of wines
using the profile of elements in the samples and applying
multi-dimensional chemometric techniques are supported
by the studies in many countries, including Canada (Green-
ough, Mallory-Greenough, & Fryer, 2005; Taylor et al.,
2003), Czech Republic (Kment et al., 2005; Sperkova &
Suchdnek, 2005), Germany (Gémez, Feldman, Jakubowski,
& Andersson, 2004), Ttaly (Marengo & Aceto, 2003), New
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Zealand (Angus, O’Keeffe, Stuart, & Miskelly, 2006), Portu-
gal (Almeida & Vasconcelos, 2003), Romania (Done, Stoica,
Cotea, Baiulescu, & Capota, 2006), Spain (Pérez-Trujillo,
Barbaste, & Medina, 2003), South Africa (Coetzee et al.,
2005). The role of wine making processes to the elemental
pattern in the product, as well as other sources of informa-
tion, including the isotope ratios of heavy elements, are also
being studied (Gémez, Brandt, Jakubowski, & Andersson,
2004; Almeida & Vasconcelos, 2004; Capron et al., 2007;
Suhaj & Korenovska, 2005). Multi-element techniques, such
as ICP-MS, are recognized as providing a powerful means
for a rapid profiling of the trace element concentrations in
awide range of foods. The statistical methods usually include
multivariate techniques as factorial analysis, discriminant,
principal component analysis, artificial neural networks,
classification and regression trees (Capron et al., 2007; More-
da-Pineiro, Fisher, & Hill, 2003; Pérez-Trujillo et al., 2003).
Summarizing available publications on the subject, it
can be concluded that the elemental pattern of wines
depends at least on soil, viticulture, environment and wine
making technologies. Consequently, in case of the involve-
ment of a higher number of geographical regions and wine
making technologies the possibilities of finding unambigu-
ous indicators for product authenticity become more and
more complicated. The number and the complexity of the
mathematical models needed also increase if more than
two classes are to be regarded. From the other side, differ-
ent mathematical approaches usually provide similar
results if the essence of the problem is accounted for. The
main goal of the present study was to measure the concen-
trations of elements in a wide variety of randomly selected
wines and to aid in the elaboration of simple and transpar-
ent procedures of classification of products when the coun-
tries of their geographical origin can be both quite close
and rather remote, and the number of the countries is com-
paratively large. Special attention is attributed to the selec-
tion of the best discriminating set of elements.
Development of the probabilistic approach, based on the
standard deviation estimates, to the evaluation of uncer-
tainty of the classification was a subsequent task. Calcula-
tion of the re-substitution and prediction rates, often used
in evaluations of the quality of classifications, needs very
large number of samples to get the reliable estimates and
possibly tends to overoptimistic classification rates.

2. Experimental
2.1. Wine samples

The bottled wine samples were purchased form the local
market. In total, 103 different wines from seven countries
were selected for the measurements in two experiment ser-
ies. The countries of wine origin and the number of samples
in the Ist series of experiments include Bulgaria (5), Chile
(5), France (6), Hungary (7), Italy (6), Spain (9), USA (Cal-
ifornia) (5); in the second series of experiments the wines
from Chile (20), France (20) and Spain (20) were selected.

The majority of the wines were red and dry, except for
some white wines (one sample from California, France,
Hungary, Italy and Spain). The wines were produced in
1996-2003, the concentration of alcohol varied from 11%
to 19%, the amount of sugar was from 5 to 50 g/dm?>.

To ensure acceptable stability and reproducibility of
sample introduction, wine samples were diluted by a factor
1:4 for the measurement of microelements and 1:30 for the
measurement of elements present in larger concentrations
mainly, as well as to test for the matrix effects. Merck
multi-element reference material was used for calibration
to obtain the absolute concentrations of elements. As the
wine samples were rather different (e.g. due to the varia-
tions in alcohol and sugar contents), the dependence of
the analytical signals on the matrix was evident. Internal
standardization was also used as a mean for reduction of
the matrix and signal time variation effects. Be, In, Rh,
Sc and Tm were tested for this purpose. As similar effects
on all the internal standards were observed, Tm was
selected as the most convenient and was the only internal
standard for systematic measurements.

2.2. Materials and reagents

The wines were subsampled to clean PE bottles. Ultra
pure water as prepared by NANOpure Barnstead/Thermo-
lyne Co. (Dubuque, USA) purification system was used for
all dilutions. ICP Multi-Element Standard Solution VI
CertiPUR (Merck, Darmstadt, Germany; k=2 uncer-
tainty no more than 5%) was used as a calibration standard
solution. Up to 2% of nitric acid (Suprapur®, 65.3%,
Merck) was added to the diluent for the stabilization of
the subsamples. Simultaneously Tm was included as an
internal standard at the concentration 10 ng g~ .

All plastic labware (PE bottles, centrifuge tubes, pipette
tips) used for the sampling and sample treatment were new
and were cleaned by soaking them for 24 h in the each bath
containing the following substances: first 10% HNOj, sec-
ond 5% HNOs; and last ultra pure water. After rinsing with
ultra pure water the labware were dried in a class 10 clean
bench.

2.3. ICP-MS measurement techniques and procedure

The measurements were carried out by a double focus-
ing sector field mass spectrometer Element 2 (Thermo
Finnigan MAT, Bremen, Germany). The main characteris-
tics of the mass spectrometer and sample introduction sys-
tem were as follows:

Concentric, 1 ml/min
(peristaltic pump was used)
Scott double pass

Nebulizer, sample
uptake rate

Spray chamber

Argon gas flow rates,
L min™!
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Plasma 14
Auxiliary 0.75
Sample 1.35
RF power 1100W
Sample and skimmer cones Nickel
Acquisition mode E-scan
Internal standard Tm
Wash time 3min
Take up time 1 min

Selected elements
Low resolution (300)
Medium resolution (4000)

B, Be, Li, Pb, Rb, Sr, TI, U
Al, As, Ca, Co, Cr, Cu, Fe,
Ga, Mg, Mn, Na, Ni, Rb,
U, V, Zn

High resolution (10,000) As, Ba, K, Mn, Na, Rb, Sr

As mentioned above, to avoid clogging of the sample
introduction system and to facilitate reduction of the
matrix effects wine samples were diluted before measure-
ments. To control the stability of the analytical signals
the measurements of the standard solutions were repeated
before and after the measurements of the samples. The
measurements of the elements were repeated at least twice
at different conditions: in samples of different dilutions, at
different resolutions of the mass spectrometer and on differ-
ent isotopes. Repeatability of the measurements of the ana-
lytical signals usually was not worse than 2—3%.

3. Results of the measurements

The absolute concentrations of 23 elements, namely Li,
Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Ga, As, RbD, Sr, Ba, T1, U in 103 wines from seven countries
were measured. The results of measurements in different
resolutions, for different isotopes, in the samples of differ-
ent dilution coincide within precision of 5%, however in
most cases 2%. Blank signals usually were lower than 3%
of the signal value, often lower than 1%, but in some cases
(Be, Ga, TIl) sometimes reached up to about 20%. Possible
inputs from different uncertainty sources in preparation of
the test samples and reference materials, sample introduc-
tion, measurement and data analysis (as recommended by
Eurachem & CITAC, 2001) including dilution, purity of
diluent, weighing, clean-up, signal instability in time,
matrix effects, uncertainty of the reference material and
blank were accounted for in the uncertainty estimates.
Total uncertainty essentially depend on element and con-
centration range. Mainly it does not exceeded 7% (k = 2)
while for some elements, e.g. Tl (mainly due to irreproduc-
ibility of the signals and blank) Cu, Zn (because of the
matrix effects) the measurement uncertainty was up to
10%, or even 15% (TI). In particular, because of the large
concentrations of K in the samples adequate rinsing of
the apparatus needed a long time, and the procedure used
in the first experimental series was improved in the second
one. The ranges of variation of the measured concentra-

Table 1
Intervals of variation of the concentrations of elements in the measured
wines and 3¢ limits of detection (ng g~ ")

Element min max max/min Limit of detection
Al 215 5600 26 0.02
As 0.9 29 32 0.05
B 3000 15,000 5 0.01
Ba 42 440 10 0.001
Be 0.16 6.2 39 0.01
Ca 54,000 134,000 2.5 0.03
Co 1.3 9.8 7.50 0.002
Cr 8.9 77 8.7 0.01
Cu 10 520 52 0.01
Fe 730 8800 12 0.002
Ga 0.08 0.97 12 0.01
K 630,000 2,100,000 3.3 0.05
Li 2.5 290 1160 0.01
Mg 29,000 150,000 5.1 0.01
Mn 310 3600 12 0.01
Na 940 71,000 76 0.01
Ni 11 55 5 0.01
Rb 185 6600 36 0.001
Sr 330 2200 6.7 0.001
Tl 0.04 1.10 28 0.001
U 0.20 10 50 0.005
\% 1.5 465 310 0.003
Zn 125 2200 18 0.01

tions in absolute and relative units and the corresponding
limits of detection are presented in Table 1.

4. Strategy of data analysis and pattern recognition
4.1. PCA classification of samples

Discrimination between regions of origin is based on
variations of the measured concentrations of elements. As
the number of elements was large the pattern recognition
techniques should be applied to classify the data. The stan-
dard principal component analysis (PCA) technique was
used in the present work. It is a convenient tool for the
reduction of data dimension to some principal components
and visualization of the similarities. It provides a new set of
variables obtained as the best linear combination of the ori-
ginal parameters which accounts for more of the variance
than any other combination. At the same time this chemo-
metric tool enables to find out in what respects the samples
are different and which variables contribute most to the dif-
ference. The Unscrambler software was used. The loga-
rithms of the concentrations were preferred (compare
Capron et al., 2007; Taylor et al., 2003) for the correspond-
ing mathematical treatment to reduce the relative role of
large deviations.

The variations between batches larger than those within
batches are expected for the successful classification. The
real situation is different for every element and countries
of interest. Application of as wide a set of elements as pos-
sible seems most straightforward. Data from the first
experiment on measurements from five to nine wines from
seven countries were tested for the preliminary screening.
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Poor classification possibilities were found. One can expect
that rejection of the nonspecific information and inherent
noise can be helpful. Anova software as included into the
Excel data analysis package was used for the purpose.

In Fig. 1, the classification pattern as obtained accord-
ing to concentrations of Sr, Rb and Zn is presented. For
those elements F was the largest for the batch including
all countries, namely F> 8 F_;. Three groups of the sam-
ples can be clearly distinguished: wines from Bulgaria,
Hungary and Spain, samples from France and Italy, and
those from Chile and California. More detailed discrimina-
tion according concentrations of those elements was not
possible, and further classification was undertaken as a
next independent step.

New Anova analysis of the data for all elements and
countries in each group separately was carried out once
more and the elements with the largest F factor for every
group (in general different from the elements detected in
the first test) were determined. Discrimination of wines
from Chile and California was based on the concentrations
of Cr, Mg and Sr (F/F_; > 2.2, Fig. 2). Only one principal
component (PC1) is sufficient to separate between the two
batches. Classification of samples from Bulgaria, Hungary
and Spain could be undertaken as three two-country steps
(BGR-HUN, BGR-ESP, HUN-ESP) but direct classifica-
tion based on a larger number of elements was also possi-
ble. The example of such classification based on data for
Al, Ca, Cr, Fe, K, Li, Mn, Na, Rb, Sr (F/F.; > 1.5) is

PC2

¢ ESP
= BGR
A HUN
x ITA

0.800 -

A

T " o
-0.60Q -0.400 -0.200 0.4

-0.600 -
PC1

Fig. 1. Classification of wines from seven countries based on concentrations of Rb, Sr and Zn. Explained variance: 53% (PC1) and 34% (PC2). Absolute
loadings of Rb and Zn to the principal components were from 0.5 to 0.8, those of Sr 0.04 and 0.26.

0.40 -

0.30 -

o CHL
= CAL

PC1

Fig. 2. Separation between Chile and California wines (Cr, Mg, Sr). Explained variance: 83% (PC1) and 16% (PC2). Absolute loadings of Cr and Sr to the

principal components were from 0.5 to 0.8, those of Mg 0.12 and 0.29.
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presented in Fig. 3. Bulgarian and Hungarian wines could
be easy separated according to data on Cr, K, Rb and Sr.
Data on the concentrations of Ca, K and Sr (F/F_; > 1.3)
were found the best for the separation of wines from Italy
and France (Fig. 4).

In such a manner, the best discriminating elements can
be used for every particular step. Separation between the
samples from any two countries is the final result. The pos-
sibility to determine common F factors for the whole group
is essential as the starting point. Nevertheless, the two-
country F factors were found very useful not only for the
separation of the samples from the corresponding two
countries, but for the strategy of separation within small
groups as well. For example, in classification of samples

from Bulgaria, Hungary and Spain F/F,; for the elements
accounted for varied from 42 (Rb) to 1.9 (Mn). In spite of
small discrimination capability for the whole three country
batch for Cr (F/F.i = 1.5) this element was included as
one of the best discriminating between BGR and HUN
to improve separation between those two countries. For
the same reason in this case V was omitted: in this case
F/F ;= 7.3 however it essentially reduces discrimination
possibility between BGR and HUN (the two-country
F/F.; = 0.1). Similar approach can be useful even in com-
plex cases, such as shown in Fig. 1, but the common F for
the whole group provides good starting approximation.
Two principal components account for 71% of the var-
iation of the data in Fig. 3 and about 87% of the variation

«BUL
= HUN
A ESP

PC2

PC1

Fig. 3. Discrimination between wines from Spain, Bulgaria and Hungary according to the data on Al, Ca, Cr, Fe, K, Li, Mn, Na, Rb, Sr (F/F_; > 1.5).
Explained variance: 48% (PC1) and 23% (PC2). Absolute loadings of K to the principal components were 0.4 and 0.7, Al 0.5 and 0.4, other elements — less

than 0.4.

*

0.300 - o ITA

= FRA

-0.400 -0.300 -0.200 -0.100

-0.300 -
PC1

0.200 0.300 0.400

Fig. 4. Attempt of discrimination between wines from Italy and France (Ca, K, Sr; F/F; > 1.3). Explained variance: 79% (PC1) and 18% (PC2). Absolute
loadings of K and Sr to the principal components were from 0.4 to 0.9, those of Ca about 0.2.
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in Fig 1. In such cases it is possible that resolution of the
batches can be improved if more PC will be included. In
the cases considered above the additional components do
not improve the resolution essentially.

The loadings of elements to the principal components
presented in the figures are included in the figure captions.
When only three elements are enough for the characteriza-
tion of the batch it seems attractive to compare the PCA
classification results with those of the direct application
of the three-dimensional concentration graph. Neverthe-
less, the tests confirmed better classification capabilities
of the PCA description even in such simple cases.

4.2. Representativity of samples and quality of the
classification

As presented in figures above, the PC values for samples
from the same batch, similar to the concentrations of ele-
ments, vary in some intervals. Statistical characteristics of
the distributions and principles of the statistical analysis
were used for evaluation of the quality of classification.
The means and standard deviations of the PC values were
calculated for all batches. Normal distribution was accepted
as a starting approach. Area in which the data of a particular
batch are expected to be found at the selected level of confi-
dence will be limited by a constant-probability contour of
the bivariate distribution (Weisstein, 2004)

1

X, =
plx,y) —

2n0,0,

Here x and y stands for the first and second principal com-
ponents, ¢ is the standard deviation, p = cor(x,y) is the cor-
relation coefficient between x and y, and must be zero
because of the orthogonality of the principal components.
Accuracy of determination of the standard deviations o,
and g, is also restricted because of the limited number of
measurements, and the corresponding probability distribu-
tion ought to be accounted for. We did not found in liter-
ature convenient for application formulas joining the two
distributions and computer analysis of the real cases was
undertaken. As a result equation of the ellipse of a con-
stant-probability contour of the prescribed distribution in
the form
2 2

=1 (2)
(ta,)”  (to))
was found as a practically acceptable, while mathematically
crude, approximation. Here ¢ is the Student’s coefficient cor-
responding to the selected confidence level (0.9) and number
of measurements. Of course, straightforward methods of
hypotheses testing should be applied to get the mathemati-
cally exact results, but the graphical presentation was found
convenient and useful. Eq. (2) was used to calculate the ellip-
ses according to the corresponding standard deviations of

the values of the principal components and numbers of mea-
surements in the figures. In such an approximation if the
ellipses do not cross we accept that at the 0.9 probability le-
vel the corresponding batches can be regarded as separate. If
the ellipses cross each other and the areas partially overlap
significance of the common part of the probability distribu-
tion for both batches must be evaluated. It is possible by cal-
culation of the integrals [ p(x,y)dxdy over that area with the
probability P (normalized to 1) distributions separate for
both overlapping distributions.

As an example, inputs of the overlapping area of CHL-
California and BGR-HUN-ESP (Figs. 2 and 3) distribu-
tions into corresponding total probabilities are about 3
and 2% correspondingly, and the superposition of the distri-
butions is not important at the accepted 0.9 confidence level.
Thus the two batches at that confidence level can be regarded
as separate. The separation can be improved if the number of
samples is increased. The superposition of the distributions
in Fig. 5 (Italy—France) exceeds 10% of the total probability,
and separation of those batches at that confidence level must
be regarded as not possible.

The criterion for the best selection of the elements to be
accounted for, including assessing a possible redundancy in
variable selection, is the minimum of the standard devia-
tions (axes of the ellipses, in general — uncertainties) of
the PCA values in comparison to the difference between
the mean values (centrums of the ellipses) for the batches
under discrimination. The limited resolution possibilities
were the reason why the 0.9 probability level was used in
this publication. Transition to the 0.95 probabilities most
frequently applied can easy be made by expanding the axes
of the ellipses by about 20%.

As presented above, from 5 to 9 wines from one country
were measured in the first series of experiments. One of the
goals was to test if small data sets can be of any practical
interest for the preliminary description of the batches. As
follows from the material above the answer is positive.
Increasing the number of samples for the homogeneous
batch should result in better accuracy of the mean value
of the parameters and their standard deviation and, as a
consequence, smaller Student coefficient and the ellipse.
In reality, there are a lot of reasons for variation of the
samples, especially if those are to represent such a large
region as a country and increasing of the number of ran-
domly selected samples can add to the variety and varia-
tions of the describing parameters. As an example, if
samples from some different regions of the same country
will be included broadening of the distribution of the
describing parameters can be expected.

In the second series of experiments, 20 different red
wines from each of the following countries: Chile, France
and Spain were measured. If all the data are included the
resolution of the former pictures is slightly improved. In
more details, the transformation of the distributions is ana-
lyzed in Fig. 5a, b where the data for all wines from Chile,
France and Spain as measured in both experiments for Rb,
Sr, Li and Zn, and the corresponding 0.9 probability
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Fig. 5. Two principal component pattern for wines from Chile, Spain and France (solid line) measured in both experiments (Li, Rb, Sr and Zn, F/
Fi; > 11) and some regions (dotted line). Explained variance: 59% (PC1) and 27% (PC2). Absolute loadings of the elements to the principal components

were from 0.1 to 0.8.

ellipses as solid lines are included. Li (absent in Fig. 2) was
included to strengthen the differences between the smaller
regions within the countries (see below). In parallel the
ellipses corresponding to the samples measured in the first
experiment only (dashed lines) are presented. Both distri-
butions for the wines from Spain are almost the same
(0.9 probability level), distribution of the larger number
of samples for Chile gets closer while that for France
changes essentially. Consequently more detailed informa-
tion on the samples should be regarded.

First of all the type of the wine; as mentioned above only
red wines were measured in the second series of experi-
ments. In the first series, the red wines also dominate, how-
ever, some white wines from Spain, Italy, California,
France and Hungary were included. Naturally, those single
points obtained on white wines do not change essentially
the general view of the probabilistic pictures but often tend

to the borders of the corresponding 0.9 probability distri-
butions (explicitly marked as transparent points in Figs.
1, 3). The differences depend on the elements being
regarded and particular combinations of those elements
can be important, which indicates that the two classes of
wines such ought to be regarded as different products. As
example of some other kind: the lowest point for Spanish
wines in Fig. 3 corresponds to a wine bottled in Denmark.
Besides, some marked wines were detected as quite different
from their batches just according to the measured concen-
tration values. More detailed analysis of the data showed
that those were bottled in foreign countries, and therefore,
they were excluded from the current analysis.

All Chile wines (measured in both experiments) were
from Central Valley. In this case (Fig. 5), the variety of
samples (according to Rb, Sr, Li, Zn) was sufficiently
represented in the first experiment and increasing of the
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number of samples narrows the distribution. Concerning
the French wines addition of the new samples essentially
increased the diversity of the geographical regions being
considered, and the distributions obtained in the two
experiments are different. Naturally, it would be of interest
to separate the smaller geographical regions within the dis-
tribution representing all the country. Ellipses indicating
samples from Bordeaux (France), Valencian, Aragon (Car-
inena, Campo de Borja) (Spain) regions are presented in
Fig. 5b as dotted lines. Certainly, to obtain the optimal
classification into regions the next independent steps (new
tests of the F values corresponding to the classifications
being regarded) should be undertaken.

Thus, the problem of classification of the samples is in
close relation with the problem of the adequate representa-
tion of the diversity of the batches by samples. Possibly the
two tasks are strongly interconnected and just the study of
both could give a more global perspective.

As mentioned above, the normal distribution approach
was used to evaluate the quality of discrimination between
the batches. As the dependences between the input data
and the values of the principal components are very com-
plicated the character of the distribution of the principal
components is not self evident. Very large data sets (hun-
dreds of samples) would be needed to test the character
of the distribution directly. Our test included the following
approaches. First of all, as the 0.9 probability confidence
level was selected the ellipses in the figures should include
about 90% of the corresponding samples. Really part of
the samples found inside the ellipses in Figs. 1-5 varies
from 0.8 to 1 while the mean value was 86% + 4%
(k=2) in good agreement with the predetermined proba-
bility. In addition, the third and fourth moments of the dis-
tributions of the first three principal components were
calculated for the largest batches, namely those regarded
in Figs. 1 and 5. The mean ratio of the third moment of
the distributions and the third power of the standard devi-
ation was —0.14 + 0.32 (k = 2) while the ratio of the fourth
moment and ¢* was 2.8 +0,7 (k=2) in good agreement
with the values characteristic for the normal distribution
(0 and 3 as the corresponding values are expected).

In general, as mentioned above, increase of the number
of samples and number of the principal components could
be used to improve the quality of classification. Improve-
ment of the accuracy of measurements, especially for the
elements at small concentrations, is an additional possibil-
ity. Nevertheless, cases are expected where the classification
will be not good enough or even impossible.

According to Fig. 4, Italy and France should be regarded
as one batch. Identification of the smaller classes, possibly
based on quite different approaches, may help further steps.
Really, the states may be not specific enough classification
criterion concerning wines, especially if those states are
neighbors, while some specific differences depending on tra-
ditions, standardization, legal approaches etc. are possible
and should not be missed in organization of the measure-
ments. As one of the approaches, smaller geographical

regions, vineyards, etc. can be introduced as the classification
batches for the next step. We had too few material for the
detailed classification of the French and Italian wines by
regions but, as an example, Bordeaux wines could be dis-
criminated from Italian ones according to the data on con-
centrations of Ca, Li and Sr. In particular, essential change
of criteria of classification can be indispensable if the new
principles of identification of the classes are introduced.

Naturally, discovering of the most specific criteria is
very important at any classification step. In every step dis-
cussed above the classes are getting smaller. Decreasing the
differences between the regions will result in smaller varia-
tions of the concentrations of elements. At the same time,
one can expect that the remaining reasons of variation will
be more common for larger number of elements, i.e. the
correlations between concentrations of elements could
increase due to some common agrochemical or technolog-
ical processes. As an example, positive correlation between
concentrations of Ca, Mg, Li, Ni was observed for Spanish
wines in general while for Campo de Borja this list includes
Cu, Fe, Zn in addition but concentrations of all those ele-
ments tend to anticorrelate with concentrations of Al, B,
Ba, Rb. Correlations between concentrations of Al, Ga,
U, V were found characteristic to French wines while for
Bordeaux wines positive correlations between concentra-
tions of Ba, Ni, Rb, Sr, and some other correlating ele-
ments, were found in addition. Method of application of
correlations to description of the individual samples and
application for classification purposes was described by
Serapinas and Ezerinskis (2006). The method was not used
for classification here as only some regions were repre-
sented enough by samples in this study.

5. Conclusions

The results obtained demonstrate high potential of the
multi-element analytical data description by the principal
components for the wine pattern recognition, even when
large variety of regions is included. Step by step approach
from large to smaller batches was found a promising
method for a better exploitation of the discriminating
power of the most discriminating elements at the particular
step. Selection of elements is essential to reduce the noise
level and can be carried out by the usual statistical proce-
dures. Anova provides sufficient information on the impor-
tance of an element. The data at the limits of the ranges of
the concentrations can readily provide preliminary infor-
mation on what regions can or cannot be regarded as prob-
able regions of origin of the sample. The lowest measured
concentrations of element, as compared to the whole con-
centration range for the same element, seem to be particu-
larly promising: it is hardly probable to reduce the
concentration of a single or few elements in wine selectively
while accidental or fraud contamination is easy. Even for
such abundant elements as Mg, Al, K, Rb and Sr, or minor
elements Be, Cr, Ga and TI individual potential biasing
countries or groups of such countries could be found.
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Knowledge and reduction of the uncertainties of the mea-
surement can be decisive in this case. Some measured wines
originally attributed to one of the countries studied, really
were bottled in foreign countries, and were identified as
biasing according to the measured concentration values
or from the PC analysis.

Classification of food products, e.g. diary products (Kar-
oui & De Baerdemaeker, 2007), olive oils (D’Imperio, Dugo,
Alfa, Mannina, & Segre, 2007), honey (Bertelli, Plessi, Saba-
tini, Lolli, & Grillenzoni, 2007) on the basis of elemental,
molecular analysis and other indicators is a fast developing
approach. Highly advanced study, based on very extensive
material for wines was published recently by Capron et al.
(2007). We hope that the stepwise approach from large to
smaller variety of batches, as applied in the present paper,
based on simple software technique can be useful especially
when the number of classes essentially increases. Besides,
usually very good classification rates, as provided in the pub-
lications above, are hardly compatible with the statistical
nature of the distributions of the data presented and proba-
bilistic evaluation of the uncertainty of the data. Further
studies of the predicting power of the classification results
seem to be desirable.

It is highly probable that the level at that the step by step
classification stops as well as the level of confidence of clas-
sification now is mainly determined not by analytical or
mathematical discrimination capabilities but by reasonable
identification of the batches and sufficiently exhaustive rep-
resentation of the corresponding variations of the concen-
trations of elements by samples. Simple increase of the
number of samples is hardly a promising solution of the
problem. It needs better understanding of the genesis of
the differences and ways in which they manifest themselves,
and corresponding derivation of the discrimination criteria.
Both studies on identification of batches and discrimina-
tion between them are highly interconnected.
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